Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Timothy J. Prior

Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington WA4 4AD, England

Correspondence e-mail: t.j.prior@dl.ac.uk

Key indicators

Single-crystal synchrotron study $T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.049$
$w R$ factor $=0.118$
Data-to-parameter ratio $=24.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris(ethylenediamine- $\kappa^{2} N, N^{\prime}$)cadmium(II) dinitrate

The title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$, crystallizes with distorted $\mathrm{Cd}(\mathrm{en})_{3}{ }^{2+}$ octahedra. Extensive hydrogen bonding is present between the ethylenediamine and nitrate groups.

Comment

Six-coordinate cadmium(II) complexes are intriguing systems because of the competition between pseudo-octahedral and trigonal-prismatic geometry. The $4 d^{10}$ configuration of the cation allows a study of the geometric effects of altering the ligand set without competing ligand field effects (Holloway \& Melnik, 1995).

(I)

The title compound, $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$ (en $=$ ethylenediamine), (I) (Fig. 1), contains roughly octahedral $\mathrm{Cd}(\mathrm{en})_{3}{ }^{2+}$ units with each ethylenediamine bidentate to Cd^{2+}, and is charge-balanced by two nitrate anions. The relatively small 'bite angle' of the ethylenediamine (Table 1) means there is a significant distortion away from ideal octahedral geometry, similar to analogous compounds (Mahadevan et al., 1985; Yuge et al., 1995).
The $\mathrm{Cd}-\mathrm{N}$ distances (Table 1) all lie between 2.347 (3) and 2.400 (3) \AA, in good agreement with similar compounds (Mahadevan et al., 1985; Yuge et al., 1995). While the space

Figure 1
A view of (I), with displacement ellipsoids drawn at the 50% probability level. The disordered nitrate group is unlabelled.

Received 17 January 2006
Accepted 18 January 2006

Figure 2
The three orientations of the disordered nitrate group in (I). Displacement ellipsoids are drawn at the 50% probability level.
group is centrosymmetric, it is important to note that the Cd^{2+} ion does not lie on an inversion centre. The unit cell thus contains both L- and D-Cd(en) ${ }^{2+}$ cations.

The asymmetric unit of (I) (Fig. 2) contains two nitrate anions. One nitrate is well ordered ($\mathrm{N} 20 / \mathrm{O} 20 / \mathrm{O} 21 / \mathrm{O} 22$), but there is significant disorder in the second and it was modelled as split over three orientations in the ratio 0.477 (8):0.331 (6): 0.195 (7). A large number of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds exist between the $\mathrm{Cd}(\mathrm{en})_{3}{ }^{2+}$ and nitrate units. For the well ordered nitrate, the N..O distances lie in the range 2.976 (4)3.163 (4) \AA (Table 2). $\mathrm{N} \cdots$. O distances for those to the second (disordered) nitrate lie in the range 2.828 (4)-3.444 (4) \AA.

Experimental

Cadmium nitrate tetrahydrate $(0.0308 \mathrm{~g}, 0.1 \mathrm{mmol})$ was dissolved in propan-2-ol (15 ml) in a 50 ml beaker. Ethylenediamine (1 ml , 0.0167 mol) was placed in a sealed plastic vial. The top of the vial was pierced with a needle and the vial placed in the beaker. The beaker was sealed with Parafilm. Slow diffusion of ethylenediamine into the alcoholic solution led to colourless crystals after a period of a few weeks. Reagents were purchased from the Aldrich Chemical Company and used without further purification.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=416.73$
Monoclinic, $I 2 / a$
$a=15.2574$ (12) \AA
$b=11.0441$ (8) \AA
$c=19.155(2) \AA$
$\beta=90.246(1)^{\circ}$
$V=3227.6(5) \AA^{3}$
$Z=8$
$D_{x}=1.715 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker APEXII diffractometer

Narrow-frame ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.647, T_{\text {max }}=1.00$
20814 measured reflections
5813 independent reflections

Synchrotron radiation

$\lambda=0.6711 \AA$
Cell parameters from 2733 reflections
$\theta=2.9-23.0^{\circ}$
$\mu=1.39 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
Block, colourless
$0.02 \times 0.01 \times 0.01 \mathrm{~mm}$

4525 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=31.1^{\circ}$
$h=-22 \rightarrow 23$
$k=-16 \rightarrow 16$
$l=-29 \rightarrow 28$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0288 P)^{2}\right. \\
& \quad+0.6151 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.03 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.69 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.118$
$S=1.07$
5813 reflections
240 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{N} 1$	$2.364(3)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.469(5)$
$\mathrm{Cd} 1-\mathrm{N} 2$	$2.400(3)$	$\mathrm{N} 4-\mathrm{C} 4$	$1.474(4)$
$\mathrm{Cd} 1-\mathrm{N} 3$	$2.362(3)$	$\mathrm{N} 5-\mathrm{C} 5$	$1.461(5)$
$\mathrm{Cd} 1-\mathrm{N} 4$	$2.347(3)$	$\mathrm{N} 6-\mathrm{C} 6$	$1.466(5)$
$\mathrm{Cd} 1-\mathrm{N} 5$	$2.355(3)$	$\mathrm{C} 2-\mathrm{C} 1$	$1.499(6)$
$\mathrm{Cd} 1-\mathrm{N} 6$	$2.382(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.514(5)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.473(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.515(5)$
N2-C2	$1.476(5)$		
N1-Cd1-N2	$74.45(12)$	$\mathrm{N} 5-\mathrm{Cd} 1-\mathrm{N} 6$	$74.52(11)$
N3-Cd1-N4	$75.38(10)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4D . O 10	0.85 (2)	2.31 (2)	3.163 (4)	175 (3)
N5-H5C...O11	0.84 (2)	2.21 (2)	3.026 (4)	166 (4)
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 10^{\text {i }}$	0.84 (2)	2.46 (3)	2.991 (3)	122 (3)
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{D} \cdots \mathrm{O} 10^{\text {i }}$	0.86 (2)	2.29 (3)	3.050 (4)	148 (4)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{O} 12^{\text {ii }}$	0.85 (2)	2.21 (2)	2.976 (4)	150 (3)
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{O} 12^{\text {ii }}$	0.84 (2)	2.29 (3)	3.022 (4)	146 (4)
N3-H3D \cdots O11 ${ }^{\text {iii }}$	0.84 (2)	2.31 (3)	3.047 (4)	147 (4)

The non-standard setting of $C 2 / c$ employed (I2/a) was chosen as the C-centred setting has a rather oblique β angle $\left(128.39^{\circ}\right)$. H atoms attached to the ethylenediamine C atoms were positioned geometrically and refined with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. H atoms bonded to the amine N atoms were located in a difference map. The positions and isotropic displacement parameters of these were refined, but the $\mathrm{N}-$ H bond lengths were restrained to 0.86 (2) Å. The disordered nitrate was modelled over three positions. All of the O atoms were refined with a single isotropic displacement parameter. Initially three positions were refined for the N atoms, but this refinement proved unstable. Two N -atom positions were therefore employed, with a single iostropic displacement parameter. $\mathrm{N}-\mathrm{O}$ bond lengths in the three orientations were restrained to be equal, with an s.u. of $0.02 \AA$. The maximum residual electron density is located $0.57 \AA$ from O21B.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: $A P E X 2$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

TJP thanks Drs S. Fiddy and S. Hayama for assistance with the data collection.

metal-organic papers

References

Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Holloway, C. E. \& Melnik, M. (1995). Main Group Met. Chem. 18, 451-585.

Mahadevan, C., Seshasayee, M., Sastry, S., Subrahmanyam, C. (1985). Z. Kristallogr. 171, 173-178.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yuge, H., Mamada, A., Asai, M., Nishikiori, S. \& Iwamoto, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3195-3205.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

